양극 안정화 위해 넣던 전해질 첨가제 CN4가 양극 구조 파괴해 열화 가속한다는 사실 확인
리튬이온 배터리 중에서도 고에너지형 전기차에 주로 사용되는 하이니켈 배터리는 에너지 밀도가 높지만 성능 저하가 빠르다는 한계를 안고 있다. KAIST 연구진은 하이니켈 배터리가 빠르게 망가지는(열화되는) 근본 원인을 세계 최초로 규명하고, 이를 해결할 새로운 접근법을 제시했다.
KAIST(총장 이광형)는 생명화학공학과 최남순 교수 연구팀이 신소재공학과 서동화 교수 연구팀과 함께, 그동안 배터리의 안정성과 수명 향상을 위해 사용돼 온 전해질 첨가제 ‘석시노니트릴(CN4)’이 하이니켈 배터리에서는 오히려 성능 저하를 일으키는 핵심 원인임을 밝혀냈다고 12월 3일 밝혔다.
배터리는 양극과 음극 사이를 리튬 이온이 오가며 전기가 만들어진다. 리튬 이동을 돕기 위해 전해질에는 소량의 CN4가 들어가는데, 연구팀은 두 개의 니트릴(-CN) 구조를 가진 CN4가 하이니켈 양극 표면의 니켈 이온과 지나치게 강하게 달라붙는다는 사실을 컴퓨터 계산으로 확인했다.
니트릴 구조는 탄소와 질소가 삼중 결합으로 묶여 있는, 금속 이온과 잘 달라붙는 ‘갈고리’ 같은 구조다. 이 강한 결합 때문에 양극 표면에 형성돼야 할 보호막 역할의 전기이중층(EDL)이 무너지고, 충·방전 과정에서 양극 구조가 뒤틀리며(얀-텔러 왜곡, Jahn-teller distortion) 심지어 양극 전자까지 CN4로 빠져나가 양극이 빠르게 손상된다.
이 과정에서 새어 나온 니켈 이온은 전해질을 통해 음극으로 이동해 표면에 쌓이는데, 이 니켈은 전해질을 더 빨리 분해하고 리튬까지 낭비시키는 ‘나쁜 촉매’처럼 작용해 배터리 열화를 더욱 가속시킨다.
여러 분석 결과, CN4가 하이니켈 양극 표면을 니켈이 부족한 비정상적인 층으로 바꾸고, 안정적이어야 할 구조를‘암염 구조’라는 비정상적 형태로 변형시키는 현상도 확인됐다. 즉 LCO 배터리(리튬코발트산화물)에서는 유용한 CN4가, 니켈 비율이 높은 하이니켈 배터리에서는 오히려 구조를 무너뜨리는 양면성을 가진 물질임을 증명한 것이다.
이번 연구는 단순한 충·방전 조건 조절을 넘어, 금속 이온과 전해질 분자 사이에서 실제로 어떤 전자 이동이 일어나는지까지 규명한 정밀 분석이라는 점에서 큰 의미를 갖는다. 연구진은 이 성과를 바탕으로 하이니켈 양극에 최적화된 새로운 전해질 첨가제 개발에 나설 계획이다.
최남순 교수는 “배터리 수명과 안정성을 높이려면 분자 수준의 정밀한 이해가 필수”라며, “이번 연구가 니켈과 과도하게 결합하지 않는 새로운 첨가제 개발의 길을 열어, 차세대 고용량 배터리 상용화에 크게 기여할 것”이라고 말했다.
생명화학공학과 최남순 교수, 한승희, 김준영, 이기훈 연구원과 신소재공학과 서동화 교수, 김재승 연구원이 공동 제 1저자로 진행한 이번 연구는 저명한 국제 학술지 ‘에이시에스 에너지 레터즈(ACS Energy Letters)’에 11월 14일 온라인 게재되었으며 커버 논문으로 선정되었다.
<저작권자(c)스마트앤컴퍼니. 무단전재-재배포금지>